Appendix H

Noise Modeling

Construction Source Noise Prediction Model

	Distance to Nearest	Combined Predicted		Reference Noise Levels	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	(L _{max}) at 50 feet ¹	Factor ¹
Threshold	436	70	Excavator	85	0.4
Threshold	138	80	Dozer	85	0.4
Noise-sensitive receptor	50	88.8	Concrete Mixer Truck	85	0.4
			Excavator	85	0.4
			Dozer	85	0.4
			Concrete Mixer Truck	85	0.4
			Ground Type	hard	
			Source Height	8	
			Receiver Height	5	
			Ground Factor ²	0.00	
			Predicted Noise Level ³	L _{eq} dBA at 50 feet ³	
			Excavator	81.0	
			Dozer	81.0	
			Concrete Mixer Truck	81.0	
			Excavator	81.0	
			Dozer	81.0	
			Concrete Mixer Truck	81.0	
			Combined Predicte	d Noise Level (L _{eq} dBA at 50	D feet)
				88.8	

Sources:

 $^{1}\mbox{Obtained}$ from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Table 4-26 from the Federal Transit Noise and Vibration Impact Assessment, 2018 (pg 86).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2018 (pg 176 and 177).

L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2018: pg 86); and

D = Distance from source to receiver.

Construction Source Noise Prediction Model

	Distance to Nearest	Combined Predicted		Reference Noise Levels	Usage
Location	Receptor in feet	Noise Level (Lmax dBA)	Equipment	(L _{max}) at 50 feet ¹	Factor ¹
Threshold	1,225	65	Excavator	85	1
Threshold	689	70	Dozer	85	1
Noise-sensitive receptor	50	92.8	Concrete Mixer Truck	85	1
			Excavator	85	1
			Dozer	85	1
			Concrete Mixer Truck	85	1
			Ground Type	hard	
			Source Height	8	
			Receiver Height	5	
			Ground Factor ²	0.00	
			Predicted Noise Level ³	L _{eq} dBA at 50 feet ³	
			Excavator	85.0	
			Dozer	85.0	
			Concrete Mixer Truck	85.0	
			Excavator	85.0	
			Dozer	85.0	
			Concrete Mixer Truck	85.0	
			Combined Predicte	d Noise Level (L _{eq} dBA at 50	D feet)
				92.8	

Sources:

¹Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Table 4-26 from the Federal Transit Noise and Vibration Impact Assessment, 2018 (pg 86).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2018 (pg 176 and 177).

L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2018: pg 86); and

D = Distance from source to receiver.

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

STEP 1: Determine units in which to perform calculation.

- If vibration decibels (VdB), then use Table A and proceed to Steps 2A and 3A.
- If peak particle velocity (PPV), then use Table B and proceed to Steps 2B and 3B.

STEP 2A: Identify the vibration source and enter the reference vibration level (VdB) and distance.

STEP 3A: Select the distance to the receiver.

Noise Source/ID	Referei	Reference Noise Level											
	vibration level		distance		vibratio								
	(VdB)	@	(ft)		(Vc								
Vibratory Roller	94	@	25		79								
Large Bulldozer	87	@	25		79								
Loaded Truck	86.0	@	25		79								
Jackhammer	79	@	25		79								
Small Bulldozer	58	@	25		79								
Vibratory Roller	94	@	25		64								
Large Bulldozer	87	@	25		66								
Loaded Truck	86.0	@	25		65								
Jackhammer	79	@	25		64								
Small Bulldozer	58	@	25		64								

Table A. Propagation of vibration decibels (VdB) with distance

ated Noise Level at Receptor on level distance (ft) βB) @ .7 @ 75 .3 @ 45 .9 @ 40 .0 @ 25 .0 @ 5 .8 @ 235 .0 @ 125 .0 @ 125 .7 75 @ 15 @ 7

The Lv metric (VdB) is used to assess the likelihood for vibration to result in human annoyance.

STEP 2B: Identify the vibration source and enter the reference peak particle velocity (PPV) and distance.

Table B. Propagation of peak particle velocity (PPV) with distance

Noise Source/ID	Referen	Reference Noise Level									
	vibration level		distance								
	(PPV)	@	(ft)								
Vibratory Roller	0.210	@	25								
Large Bulldozer	0.089	@	25								
Loaded Truck	0.076	@	25								
Jackhammer	0.035	@	25								
Small Bulldozer	0.0	@	25								

STEP 3B: Select the distance to the receiver.

Attenuated Noise Level at Receptor												
vibration level		distance										
(PPV)	@	(ft)										
0.210	@	25										
0.191	@	15										
0.164	@	15										
0.138	@	10										
0.1	@	2										

The PPV metric (in/sec) is used for assessing the likelihood for the potential of structural damage.

Notes:

Computation of propagated vibration levels is based on the equations presented on pg. 185 of FTA 2018. Estimates of attenuated vibration levels do not account for reductions from intervening underground barriers or other underground structures of any type, or changes in soil type.

Sources:

Federal Transit Administration. 2018. Transit Noise and Vibration Impact Assessment. FTA Report No. 0123. Prepared by John A. Volpe National Transportation Systems Center, Cambridge, MA. Available:

https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-no-0123_0.pdf. Accessed April 8, 2020.

Attenuation Calculations for Stationary Noise Sources

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

STEP 1: Identify the noise source and enter the reference noise level (dBA and distance).

STEP 2: Select the ground type (hard or soft), and enter the source and receiver heights.

STEP 3: Select the distance to the receiver.

Noise Source/ID	Reference	e No	ise Level	4	Attenuation C	haracteristics		Attenuated Noise Level at Receptor						
	noise level		distance	Ground Type	Source	Receiver	Ground		noise leve	I	distance			
	(dBA)	@	(ft)	(soft/hard)	Height (ft)	Height (ft)	Factor		(dBA)	@	(ft)			
Loading Dock Activity Lmax	86.0	@	50	hard	8	5	0.00		69.9	@	320			
Loading Dock Activity Lmax	86.0	@	50	hard	8	5	0.00		65.0	@	560			
HVAC unit	78.0 @ 3		hard	8	8 5		53.6		@	50				
HVAC unit (Leq)	53.6	@	50	hard	8	5	0.00		50.1	@	75			
HVAC unit (Leq)	53.6	@	50	hard	8	5	0.00		45.0	@	135			
							0.66							
							0.66							
							0.66							
							0.66							
							0.66							
							0.66							
							0.66							
					0.66									
						0.66								

Notes:

Estimates of attenuated noise levels do not account for reductions from intervening barriers, including walls, trees, vegetation, or structures of any type.

Computation of the attenuated noise level is based on the equation presented on pg. 176 and 177 of FTA 2018.

Computation of the ground factor is based on the equation presentd in Table 4-26 on pg. 86 of FTA 2018, where the distance of the reference noise leve can be adjusted and the usage factor is not applied (i.e., the usage factor is equal to 1).

Sources:

Federal Transit Association (FTA). 2018 (September). Transit Noise and Vibration Impact Assessment. Washington, D.C. Available: http://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-

Traffic	Noise Spreads	heet Calculator																ENVIRONMENTO	
Project:	UC Santa Cru	ız - 2020 LRDP EIR																	
									Input	t							Output		
	Noise Leve	Descriptor: Ldn																	
	Site																		
	Tra	fic K Easter					Dictor	sco to											
	IId						Direct	ional											
		Segment Description and	Location			Speed Centerline (feet) Traffic Distribution Characteristics										D	istance to Co	ontour (feet).
Number	Name	From	Location	То	ADT	(mnh)	Near	Ear	% Auto	% Medium		% Day	% Evo	% Night	(dBA)	70 dBA	65 dBA	60 dBA	55 dBA
Number	inting Conditions	Troin		10	ADT	(inpit)	Near	141	78 Auto	78 IVICUIUII	1 /011eavy	70 Day	70 LVC	70 Nigitt	(004)5,6,7	70 004	UJ UDA	00 00A	55 UDA
EX	isting conditions																		
1	Pay Street				10 657	20	100	100	07.0%	2.0%	1.0%	<u>80.0%</u>	15.0%	E 0%	62.1	16		162	E12
2	Empire Grade				7 498	40	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	61.2	13	41	130	412
3	Glenn Coolidge D	Irive			20 764	25	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	60.7	12	37	117	370
4	Hagar Drive				15,484	35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	62.7	19	59	187	592
5	Heller Drive				3.197	35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	55.9	4	12	39	122
6	High Street				10,663	30	50	50	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	62.4	9	28	88	278
7	Highway 17				52,932	50	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	72.4	175	555	1754	5547
8	King Street				1,926	25	50	50	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	53.4	1	3	11	34
9	McLaughlin Drive	2			3,197	25	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	52.6	2	6	18	57
10	Mission Street/Ca	abrillo Highway			58,064	25	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	65.2	33	104	328	1036
11	Natural Bridges	Drive			4,356	35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	57.2	5	17	53	166
12	Western Drive				2,337	35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	54.5	3	9	28	89
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					

ASCENT

*All modeling assumes average pavement, level roadways (less than 1.5% grade), constant traffic flow and does not account for shielding of any type or finite roadway adjustments. All levels are reported as A-weighted noise levels.

Project:	UC Santa Cruz - 2020 LRDP EIR																
							Input								Output		
	Noise Level Descriptor: Ldn Site Conditions: Hard Traffic Input: ADT Traffic K-Factor:			Distance	e to												
					Directio	onal											
	Segment Description and	Location		Speed	Centerline,	, (feet) ₄		Traffic D	istribution	Characte	ristics		Ldn,		stance to Co	ntour, (feet)	3
Number	Name From	То	ADT	(mph)	Near	Far	% Auto	% Medium	% Heavy	% Day	% Eve	% Night	(dBA) _{5,6,7}	70 dBA	65 dBA	60 dBA	55 dBA
Exi	sting Conditions																
1	Bay Street		23,972	30	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	63.0	20	62	197	624
2	Empire Grade		9,837	40	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	62.3	1/	54	1/1	541
3	Glenn Coolidge Drive		27,477	25	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	61.9	15	49	155	490
4	Hagar Drive		18,340	35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	63.5	22	/0		/01
5	Heller Drive		6,800	35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	59.1	8	26	82	260
5	High Street		13,366	30	50	50	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	53.4	11	35	110	548
/	Highway 17		53,487	50	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	72.5	2	561	17	5606
0	Malaughlin Drive		2,989	25	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	55.5	2	12		121
9 10	Mission Street/Cabrille Highway		6,800	25	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	55.6	25	110	240	1104
11	Natural Bridges Drive		4 460	25	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	57.3	5	17	54	170
12	Western Drive		3 041	35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	55.7	4	12	37	116
12	Western Drive		3,041	35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	55.7	-	12	57	110
				35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
				35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
				35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
				35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
				35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
			1	35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
				35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					

*All modeling assumes average pavement, level roadways (less than 1.5% grade), constant traffic flow and does not account for shielding of any type or finite roadway adjustments. All levels are reported as A-weighted noise levels.

Traffic Noise Spreadsheet Calculator

Traffic	Noise Spreads	heet Calculator																ENVIRONMENTO	
Project:	UC Santa Cr	uz - 2020 LRDP EIR																	
												Output							
	Noise Leve	el Descriptor: Ldn																	
	Sit	e Conditions: Hard																	
	_	Traffic Input: ADT					.												
	Ira	mic K-Factor:					Distan	ice to											
		Comment Description and				Current	Contorlin			T		Channesta			1.1.	D	istanca ta C	ontour lfoot	`
Number	Nama	Segment Description and	Location	To		(mmh)	Neer	e, (leet) ₄	9/ Auto				/ Eve	0/ Niaht	(dRA)				
Number	Name	From		10	ADT	(mpn)	Near	Fai	% Auto	% ivieulum	i % ⊓eavy	% Day	% Eve	% Night	(UBA)5,6,7	70 UBA	05 UDA	OU UDA	55 UBA
EX	isting Conditions																		
	D (1)				7.526	20	100	100	07.00/	2.00/	4.00/	00.00(45.00/	5.00/					100
1	Bay Street				7,536	30	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	57.9	12	20	120	196
2	Clopp Coolidge I	Drive			10 441	40	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	61.1	15	41	130	247
3	Hagar Drivo	Jive			19,441	25	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	60.4	10	55	110	547
4	Hagai Drive				2 110	35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	54.1	3	8	26	
6	High Street				10 233	30	50	50	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	62.3	8	27	84	266
7	Highway 17				62,837	50	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	73.2	208	659	2083	6586
8	King Street				1.240	25	50	50	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	51.5	1	2	7	22
9	McLaughlin Driv	9			2.119	25	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	50.8	1	4	12	38
10	Mission Street/C	abrillo Highway			60,288	25	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	65.3	34	108	340	1075
11	Natural Bridges	Drive			4,564	35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	57.4	6	17	55	174
12	Western Drive				1,113	35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	51.3	1	4	13	43
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
					1										1				

ASCENT

*All modeling assumes average pavement, level roadways (less than 1.5% grade), constant traffic flow and does not account for shielding of any type or finite roadway adjustments. All levels are reported as A-weighted noise levels.

Traffic	Noise Spreads	heet Calculator																ENVIRONMENTO	
Project:	UC Santa Cr	uz - 2020 LRDP EIR																	
												Output							
	Noise Leve	el Descriptor: Ldn																	
	Sit	e Conditions: Hard																	
	-	Traffic Input: ADT					.												
	Ira	mic K-Factor:					Distan	ice to											
		Comment Description and				Current	Contorlin			T (() - D		Ch			1.4.4	D	istanco to C	ontour lfoot	`
Number	Nama	Segment Description and	Location	To		(mmh)	Neer	e, (leet) ₄	9/ Auto				/ Eve	0/ Niaht	(dpa)				
Number	Name	From		10	ADT	(mpn)	Near	Fai	% Auto	% Wedlum	% neavy	% Day	% Eve	% Night	(UBA) _{5,6,7}	70 UBA	05 UDA	OU UDA	55 UBA
EX	isting Conditions																		
4	Dave Churach				0.007	20	100	100	07.0%	2.00/	1.00/	00.0%	15.00/	F 00/	50.0	0			242
1	Bay Street				9,297	30	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	58.8	19	<u>24</u>	170	242
2	Glenn Coolidge [Prive			26 503	25	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	61.7	10		1/9	473
4	Hagar Drive	Silve			18 420	35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	63.5	22	70	223	704
5	Heller Drive				6.022	35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	58.6	7	23	73	230
6	High Street				16,194	30	50	50	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	64.3	13	42	133	422
7	Highway 17				63,305	50	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	73.2	210	663	2098	6635
8	King Street				9,609	25	50	50	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	60.4	5	17	54	171
9	McLaughlin Drive	e			6,022	25	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	55.3	3	11	34	107
10	Mission Street/C	abrillo Highway			65,551	25	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	65.7	37	117	370	1169
11	Natural Bridges I	Drive			4,823	35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	57.7	6	18	58	184
12	Western Drive				2,351	35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%	54.5	3	9	28	90
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					
						35	100	100	97.0%	2.0%	1.0%	80.0%	15.0%	5.0%					

ASCENT

*All modeling assumes average pavement, level roadways (less than 1.5% grade), constant traffic flow and does not account for shielding of any type or finite roadway adjustments. All levels are reported as A-weighted noise levels.